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THE KISSINGER LAW AND ISOKINETIC EFFECT
Part I. Most common solutions of thermokinetic equations
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Abstract

We performed the analysis of the thermokinetic equations taking into account Kissinger law. The for-
mulas obtained were verified by the use of the so-called isokinetic effect. It was shown that the
thermokinetic equation, g(α)=(AT/q)exp(–E/RT), appeared to connect both laws analyzed. Moreover,
this approach validates equation km=q/Tm which takes a form of Kissinger law, i.e. ln(q/Tm) vs. 1/Tm.

Keywords: isokinetic/compensation effect, Kissinger law, thermokinetic equations

Introduction and the aim of the work

We consider thermal decomposition of chemically defined compounds

A(s)→B(s)+νC(g) (e.q. A=CaCO3, ν=1)

or (1)

A(s)→∑νC(g) (e.q. A=NH4HSO4, ν=3)

The aim of current publication is analyze the relation between thermokinetic
Eqs (17) and (18) which can both take a form of the well-known formulas given by
Kissinger law or the so-called compensation effect which is also known as isokinetic
effect [1, 2].

Therefore, we have two different thermokinetic equations describing dynamic
conditions (q>0). In fact, no criteria are known which would provide any information
which of the equations is the proper one and which one is only the approximation.

Isothermal and isobaric conditions

The kinetic equation for isothermal conditions (T=constant) is usually given by the
relationship between the conversion degree (0�α�1) and the time (τ), it’s necessary
restriction T>Teq
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In the isothermal (and isobaric) conditions we make use of the Arrhenius law
which is usually noted in its classical form k(T)=Aexp(–E/RT).

If reaction runs in temperature T<Teq (reversible reaction) then initial Eq. (2)
should be in form, which assure that the end of reaction would take place after acced-
ing to the equilibrium conversion degree (αeq) after some time, what does not mean
that reacting (total thermal decomposition) of compound A [3] has taken place and, in
this context, we write Eq. (2) in form as following [4–8]:
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One can prove that (we omit the proof):

∆G= –νRTln(α/αeq) (5)

For thermal decomposition of A compound (1) Eq. (4) may be presented as fol-
lowing:
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where η=α/αeq is the thermodynamic yield of reaction [9] and αeq is only a function
of temperature T . Consequently,
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d
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τ
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From Eq. (6) follow two facts:

(i) process takes place ‘very far’ from equilibrium [7], α<<<αeq, transformation of
Eq. (6) to Eq. (2),

(ii) when α=αeq then dα/dτ=0 (8)

This signifies the end of reaction, which in a given temperature reaches at most
the value of the conversion degree equal to αeq. According to modified van’t Hoff’s
equation in the form [9]
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when T=Teq then αeq=1.
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Let Fig. 1 (data have been taken from [10]) illustrate how the mentioned prob-
lems are important in research works investigating in particular the heterophase pro-
cesses of type (1). The maximal conversion degree has been acceded (A=CaCO3) for
α=0.1605, αeq=0.6517 (T=1123 K). The results of quoted researches have been al-
ready analyzed in our previous works [9, 11].

Figure 1 is an illustration of assumption (i), or profiting from form (2), taken for
isothermal conditions.

Actually, thermal decomposition of CaCO3 is a complex process. This complex-
ity can be illustrated by the following:

• polymorphic changes appear, for example: calcite–vaterite [12],
• mechanism of decomposition by Jovanovic (loc. cit. [12]) assumes existing metastable

CaCO3 and CaO,
• CaCO3 and CaO can form eutectics and/or solutions.

Nevertheless, CaCO3 is used as a model compound for thermokinetic consider-
ations (Conference ICTAC, USA, 1996, [13–17] especially part B [14]).

Introduction to dynamic equations

The problem gets complicated, however, if we shift to dynamic conditions. Thus, we
most often observe the linear temperature increase, which is given by:

q=dT/dτ or T=Ti+qτ, q>0, Ti=0 K (10)

and consequently

q=T/τ, τ>0 (11)
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Fig. 1 Relation between conversion degree vs. time in isothermal conditions,
CaCO3↔CaO+CO2. 1) α=k(T)τ, kinetic of 0-order; 2) α=1–exp[–k(T)τ], kinetic
of Ith order; 3) probably path; 4) • experimental data (from [10]),
lnαeq= –173317.8/νRT+18.135, ν=1, Teq=1149.5 K (from [9])



The intercept in Eq. (10) may be equal to 0 [4, 5, 7] and may express the initial
temperature (e.g. Ti=298 K [3]) or equilibrium temperature of conversion [6, 8]. As
published by Vyazovkin and Wight in [18], in the case of the constant heating
rate (10) we can make the trivial transformation to the form:

d
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d

d

α α
τT q

= 1 (12)

Formula (12) is typical, e.g. in paper [13–17], and is correct from mathematical
point of view only.

We accept vant’Hoff’s modification (9) and we differentiate
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when α=αeq (assumption):
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We attribute α=1 to the end of reaction temperature Teq (complete decomposi-
tion of compound A). Then in accordance with Eq. (13)
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Consequently, in temperature Teq we have
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For condition (d2α/dT2)=0 from Eq. (13) we obtain Tm=∆Hd/2νR. It means, that
Tm>>>Teq.

To some extend formula (16) opposes Eq. (12). Moreover, it suggests that the rate
constant of the chemical process can definitely given by (dα/dτ) even in the dynamic
conditions. This is a fundamental principle of Šesták’s et al. approach [6, 8, 19–23]. The
main problem is however that Eq. (12) meets universal acceptance, being a kind of bridge
linking kinetic equations for isothermal conditions with the dynamic ones in a case of
linear temperature increase.

Dynamic conditions

We show below the so-called thermokinetic equation that results from a well-known
modification of Eq. (2) that includes Eq. (12), classical Arrhenius law and the differ-
ential formula giving the heating rate (q).
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However, if we analyze the equation for the total differential defining the in-
crease of the conversion degree (α), then according to previous publications [4, 5, 24]
we obtain the thermokinetic equation in a form of
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Interrelations between (E) and (RT) were discussed in a number of publications,
e.g., [24–28]. In the current work we used Eqs (17) and (18) as a starting point for fur-
ther analysis.

By experience, we know that in dynamic conditions the total thermal decompo-
sition of compound A to B (or to the sum of gaseous product C) must always occur, so
α=αeq=1. Then Eq. (12) should be introduced into Eq. (6) and, expressed by dα/dT,
may be solved by way of numeric calculations. Degree of complication of this prob-
lem has caused boundless reliance in Eq. (17).

An affair, resulting from assumptions for whose Eq. (18) has been formed, is
also complicated.

In historical approach MacCallum and Tanner [29] have proposed the differen-
tial equation for dynamic conditions, as following:
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or alternatively [5]:
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Mentioned complexity of problem results from the fact that, starting from the
date of publication in 1970 [29], the heated discussions connected with existence of
partial derivative [4, 5, 7] or with lack of (∂α/∂T)τ its physical sense have flared
up [6, 8, 19]. It is necessary to take for isothermal and dynamic process the following
equation, after all:

d

d T q

α
τ

∂α
∂τ

∂α
∂τ

= 





 =







 (21)

It means that Eq. (18) derived by way of considerations given in [4, 5, 24] is sub-
jected to discussion. Let us observe, when we introduce ratio (11) Ti=0 K, directly
into Eq. (3) and when we take the conventional k(T) equation then, after differentiat-
ing with regard to temperature, we obtain the form (18).

The present work does not take on further possibilities of using of discussed es-
tablishments (6), (19) or (20), admitting that Eqs (17) and (18), with tacit agreement
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as to their correctness, are used adequately in great number of research works. How-
ever, in most of the works definitely, one uses Eq. (17).

The conversion degree (α) is understood as a ratio of amount of reacted moles of
A compound to its initial amount of moles, so that as well for isothermal conditions as
for dynamic ones the relations arrive, as following (compare [8] or [21])

0≤α≤αeq, 0<αeq≤1 (22)

Analysis of the problem

A/ The Kissinger law

Usually the solutions of differential Eq. (17) are to take a form [30]:

g
ART
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e( )α =
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(Doyle's approximation)

(25)

The solutions that are different than those given by Eqs (23–25) are discussed in
many publications [6, 30–35]. In this context, both the number of possible solutions
as well as the controversies over a form of these solutions [36] is the main issue.

We start from the Kissinger law that comes from the condition (26)
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which is a specific form of a function (compare [22, 37]):
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We analyzed conditions (26) and (27) using Eq. (17), however with the proviso
that the f(α) function is limited to the nth (n>0) order kinetics and does not refer to 0th

order mechanism. For the f(α) functions of the Fn (n>1), R2, R3 and A2, A3 symbols
we obtain (Table 1):

δ=1 (30)

Table 1 The analysis of the conditions (37) and (28) for the known f(α) and g(α) models

Mechanism label For which αm (condition (37)) The δ value for the condition (28)

F1 αm=1–e–1=0.632 0≤α≤1, δ=1

Fn, n>1 αm=1–n(1–n)–1 0≤α≤1, δ=1

R1 αm=1 δ=0 (never)

R2 αm=3/4=0.75 δ=1

R3 αm=1–(2/3)3=0.704 δ=1

A1 αm=e(1+e)–1=0.731 δ =
+
=e

e

– .1

1
0 46 (never)

A2 αm=1–e–1=0.632 δ=1

A3 αm=1–e–1=0.632 δ=1

2F1–R1* 2ln(1–αm)+αm+1=0
αm≅0 536.

δ ≅– .0 651, (0≤α≤1, 0≤δ≤1/2)

D1, g(α)=α2/2 0≤ g(α)≤1/2
αm>1

(δ=1/2, αm= 2)

D1′, g(α)=α2 αm=1 δ=1, αm= 2/2

D2 αm→1

1<δ<∞
δ→∞ (never)

(δmin=e2/4=1.847,
α=1–e–2=0.8647)

D3** αm=1–(1– 2 3/ )3=0.9938

1<δ<∞
δ≅4.949 (never)
δmin=3.697,

α=1–[(3– 5)/2]3=0.9443)

D4** 0≤g(α)≤1/2
1<δ<∞ (never)

(δmin=5.333, α=1–0.53=0.875)

*f(α)=(1–α)(1+α)–1

**the g(α) functions include the 3/2 coefficient

If we take the Kissinger law in a form of (27) with the proviso given by (30) and
replace a term

A

q

E

RT
e=

m
2

E / RTm (31)

in Eqs (23) to (25) we obtain:
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respectively.
It can be found that Eqs (32) to (34) which are solutions of the thermokinetic equa-

tion together with the Kissinger law (with proviso δ=1) may take a linear form of:
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where m=2, 1 or 0, C=1, E/RTm or 0.005(E/RTm)2, respectively.
If T=Tm (the temperature of the maximal reaction rate, condition (26)) only for

m=2 and C=1 we obtain a condition

lng(αm)=0 (36)

Thus (e.g. from Eq. (32))

g(αm)=1, T=Tm (37)

At this point a controversy arouses if for all known mass integrals g(α):

1) derivative (28) fulfills the condition (30) and
2) condition (37) is always obeyed,

for the actual values taken by the conversion degree 0≤α≤1.
Table 1 shows the analysis performed in the reversed sequence. In fact, we need

to know the conversion degree at the temperature of the maximal reaction rate αm be-
fore we can calculate a specific value (28) for the derivative determined (29). The
data shown in Table 1 indicate that for the F1 mechanisms (this case is quite obvious)
and Fn (n>1) and R2, R3, taking into account the modified first order kinetics, i.e.,
A2 and A3, we can observe that condition (30) is fulfilled, which means δ=1 and si-
multaneously αm can be found to take a value in the range of 0<α≤1.

There is an αm value that fulfills the condition mentioned above for the A1 models
and the Dahme–Junker equation, which is a linear combination (2F1-R1), but the deriva-
tive δ≠1. The diffusion models D1 to D4 describe more complicated cases. The D1
model in a form quite often found as (g(α)=α2/2) and D4 are limited by the values that
can be taken by the mass integral 0≤g(α)≤1/2. However, if we assume other coefficients
(that sound reasonable), e.g., g(α)=α2, then the range analyzed changes, which makes
possible αm=1 and simultaneously δ=1. Although α2→1 (or 0.994) for the D2 and D3
models, condition (30) can never be fulfilled. It is not sufficient to change the coefficients
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for the D3 and D4 models, because the minimal values δ are always larger than 1. This
indicates that it is very important to decide on the side of the function:

f(α) or g(α)

to introduce numerical coefficients. Table 2 compares the approaches followed
in [5, 38–47], indicating in particular the differences observed. This concerns the R2,
R3, D1 and D3, D4 and sometimes F3 mechanisms.

Table 2 The f(α) and g(α) forms that can be found in the literature so frequently as these given
in [2, 49]

Mechanism label f(α) g(α) Ref.*

R2 2(1–α)1/2 1–(1–α)1/2 [5, 38–47]

R3 3(1–α)2/3 1–(1–α)1/3 [5, 38–47]

F3 (1/2)(1–α)3 (1–α)–2 [44–47]

D1 (2α)–1 α2 [5, 39, 40, 42–47]

D3 (3/2)(1–α)2/3[1–(1–α)1/3]–1 [1–(1–α)1/3]2 [5, 39–47]

D4 (3/2)[(1–α)–1/3–1]–1 1–(2/3)α–(1–α)2/3 [5, 39–47]

*Differents acc. to [2, 49]

At this point it is not easy to decide on how to solve and normalize this problem.
It can be speculated that the relationships of a form f(α)=(1–α)n, where n is 0, 1, 2, 3
or a fraction, should be used generally. On the other hand, we can also assume the
proper forms of the g(α) in such a form, as shown in Table 1.

The advantage of the latter solution is that allows the possibility to compare the
R3 and D3 mechanisms in forms given by Table 1, which results in similar mathe-
matical structures, e.g. g(α)=[1–(1–α)1/3]p, where p=1 (R3) or p=2 (D3) [48].

The analysis of function (29) for the diffusion models is shown in Fig. 2. It can
be concluded from Fig. 1 and Table 1 that for the D2 to D4 models condition (30) can
never be fulfilled. For the D1 model this can be achieved only by assuming a different
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Fig. 2 The h(α) profile according to (29) – search for δ=1



coefficient. Thus, theoretically for the D2 to D4 models also the condition (27) is not
longer obeyed, because δ>>>1 and for the D2 and D3 models the maximal reaction
rate is achieved just at the end of the thermal decay, similarly as for the modified D1
model (αm=1).

Therefore, it will be interesting to perform the analysis of such a case when the
experimental data can be described by the diffusion model of the D type.

Analysis of the literature data

Table 3 analyzes the data published previously [49]. The initial data is given for the
IIIb series (N=142 measurements).

Table 3 A fit of thermokinetic models and the averaged activation energy E for the reaction of
dehydration of calcium oxalate

Entry
Mechanism

label
E/

kJ mol–1
b

acc. to [9]
E/kJ mol–1

calculatedb r2/% Remarks

1 D3 156.9 2 78.5 99.36
a)r2>99%
b)E=E/b
c)E=71.9–76.6 kJ mol–1

[49],
acc. to Eq. (32)

2 R3 75.0 1 75.0 99.30

3 D4 151.6 2 75.8 99.22

4 R2 73.1 1 73.1 99.21

5 D2 149.2 2 74.6 99.07

6 F1 79.7 1 79.1 98.78 rejected models

7 D1 143.9 2 72.0 98.59

8 A2 36.4 1/2 72.8 98.57

9 R1 68.6 1 68.6 98.41

10 A3 22.0 1/3 66.0 98.30

11 2F1–R1d 84.9 1 84.9 98.29
d) g(α)= –α–2ln(1–α)

f(α)=(1–α)(1+α)–112 F2 100.6 1 100.6 87.68

13 F3 126.4 1 126.4 73.17

Significance level: 0.0(5)

The best-fitting thermokinetic models according to the determination coefficient
r2(%) are given in Table 3. The best model is the D3 one, followed by the R3, D4, R2
and D2, respectively. For the typical profile of the α vs. temperature (Fig. 3a) the re-
action rate dα/dT vs. T reaches its maximum at the Tm=471 K (according to [49]). The
corresponding conversion degree αm takes a value lower than 1, moreover, this value
is closer to the one given by the R2 model (αm=0.75) – Fig. 3b. Thus, we can con-
clude a substitution nature of the diffusion models and the models of the fraction
type, which appeared from the fact that we can observe a clear deviation in the experi-
mentally derived relationship of the conversion degrees vs. temperature in the final
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Fig. 3 a – Typical relationship between the conversion degree and temperature, a) and
b – the relationship between the reaction rate (dα/dT =∆α/∆T) and temperature

Fig. 4 Thermokinetic analysis of the conversion degree of the CaC2O4⋅H2O dehydra-
tion; data acc. [49] for of the best D3 model and Eq. (32) as a single parameter
linear plot:

ln ( ) ln . – ,g T

T

T

T
α + = 






2 40 60 1m m g( ) [ –( – ) ]/α α=3

2
1 1 1 3 2

E RT= =40 6

2
81350. m J mol–1=81.4 kJ mol–1, ρ2=99.74%



reaction phase, when α→1 [3, 49]. Further, we can conclude that if we can ‘substi-
tute’ the diffusion models that are often used for the different ones of the R2 or R3
type then the problem analyzed in Table 1 practically disappears, i.e. there is no need
to assume δ=1 in condition (28) for the majority of f(α) functions. Figure 4 analyzes
if condition (37) is fulfilled, in proviso that the above-mentioned condition of δ=1 is
obeyed. According to this criterion the best agreement is obtained for the R2 model,
followed by the R3 model, while the diffusion models, including the best from Ta-
ble 3 (D3), completely fail to obey the relationship.

If we assume that we can make use of these equations which include the
Kissinger law, (for example, Eq. (32)), the best approximation is obtained by intro-
ducing Tm=482.0 K, which means that it is 11 K higher than the actual one deter-
mined in the experiment. Thus we are obtaining the averaged value of activation en-
ergy of E=81.4 kJ mol–1, which is higher than a value estimated to be a proper one
(Table 3). Figure 5 shows the relationship of Eq. (32) which indicates that we can use
the diffusion model (in a form of the combined thermokinetic equation and Kissinger
law) but we should take into account that other thermokinetic data will bear an error,
in this case – value Tm.

Supplement

It can be concluded from the analysis presented that it is very important for the
Kissinger law given by (27) to obey a condition (30). This results in a fact that further
Eqs (32) to (34) and (36) to (37) are all fulfilled. The initial point for this analysis is,
however, the assumed thermokinetic equation (17).

Further, a solution of Eq. (18) gives:

g
A

q
e

E

RT
T( )α = +






∫ –E / RT

0

T

d1 (38)
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Fig. 5 The relationship between the mass integral and temperature for the D3, R3, D4,
R2 and D2 models – the analysis of condition (37)



It can be shown that the integral in the right side of this equation can be given by
the elementary functions (Appendix 1).

Thus, once more we obtain Eq. (24), which appeared if we introduced rela-
tion (11) and the classical Arrhenius law to the Eq. (3), as discussed in details in [4].

From the analysis of the right hand side of Eq. (33) which is a modified form
of (24) it can be concluded that Kissinger law introduced in a form of (31) makes it
much more difficult to fulfill condition (37).

Summary I

The analysis of Eq. (17)

1) The f(α) or g(α) function should be selected, assuming numerical coefficients in
them.
2) We make use of the Eqs (23) to (25) to obtain a series of kinetic parameters
(E and A).
3) The obtained parameters form the isokinetic effect (of the C type according to [2]).
Further, we estimate the provisional temperature of the maximal reaction rate Tm:

∂
∂
ln A

E RT
= 1

m

(39)

similarly as described previously [49], we calculate the averaged value of activation
energy E using the coefficients given in [9] and Table 3 (Appendix 2).
4) We assume that Kissinger law (27) and condition (30) is obeyed, i.e., δ=1, to ob-
tain (31) and further Eqs (32) to (34).
5) We assume that the f(α) functions for which condition (30) is not fulfilled, i.e.,
δ≠1, (it is clear for R1, A1, 2F1–R1, D2, D3, D4 and conditionally D1) have the same
meaning that the functions discussed in point 4.
6) If points 4 and 5 are true, then we can assume Eqs (31) and further (35)–(37).
7) According to point 6 it is possible to select the f(α) function among the best corre-
lations, as comes from the statistical tests, e.g., [50] or Table 3.

However, we still cannot be sure if the kinetic parameters estimated (E and A) are
true. It was postulated to present all thermokinetic equations that are properly ful-
filled [51], while not caring about what the coefficients of the Arrhenius law represent.

The analysis of Eq. (18)

It is very difficult to justify a form of (18) of this equation, unless we a priori assume that
Eq. (24) is obeyed. We cannot obtain any simple formula for condition (26), similar to
this of Eq. (27).

The following equation is the equivalent of Eq. (27)

E

R T

A

q
e

E

RT

2

2

2

1 0
m
3

–E / RT

m

m–δ +







 = (40)
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Further, for δ=1 the equivalent of Eq. (31) takes a form of (Appendix 3):

A

q

E

E RT

e

T
=

+










m

E / RT

m

m
2

(41)

By introducing Eq. (41) to Eq. (24) we obtain [52]

g
T

T

E

E RT

E

RT

T

T
( ) exp –α = 







 +






















m m m

m

2

1






 (42)

in proviso that

E>>>RTm (e.q. Tm=500 K, RTm=4.2 kJ mol–1) (43)

Equation (42) simplifies to form:

g
T

T

E

RT

T

T
( ) exp –α ≅ 





























m m

m1 (44)

because

E

E RT+








 ≅

m

2

1 (45)

The solution given by Eqs (40) to (45) indicates a possibility for the generation
of the further new forms derived from solutions Eqs (23) to (25), similarly to Eqs (32)
to (34).

It can be shown that Eq. (24) is the solution of (17) [4, 5, 30, 36].

B/ Isokinetic effect

The analysis of Eq. (17) allows the possibility to include isokinetic effect (39), as dis-
cussed above. It usually admits a form of

ln ln ,A
E

RT
k q= + =

m

m idem>0 (46)

Also, the reaction rate constant km is determined by the Arrhenius equation which is
fulfilled in any conditions, both isothermal (T=idem) and dynamic ones (q=idem>0):

k Aem
–E / RTm= (47)

Because Tm depends upon the heating rate according to (31) which can be given by

ln ln –q

T

AR

E

E

RTm
2

m

= (48)

it is necessary to assume q=idem in Eq. (46), as required by the Kissinger law.
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From the point of view of mathematical formalism Eqs (46) and (47) are identi-
cal. They are however different if we indicate which of the variables is the dependent
one and which is the independent one. Equation (46) can be obtained using a variety
of the f(α) and g(α) functions, i.e., lnA vs. E. Equation (47) is a calculation formula
which allow to calculate km if we know A, E and Tm.

If we introduce (31) into Eq. (46) we obtain the following relationship [30]:

ln lnA
E

RT

qE

RT
= +

m m
2

(49)

which implies

k
qE

RT
m

m
2

= (50)

Relationship (50) can be shown in a form involving dimensionless activation en-
ergy (um=E/RTm):

k
q

T
um

m

m= (51)

At least three cases can be indicated:
1) km=idem,
2) km≠idem, in proviso that the formula is fulfilled

or
3) the formula is not fulfilled.

More assumptions are needed for both the right and left sides of (51) in order to
discuss it further. Such a complex analysis indicates that the connection of Kissinger
law and isokinetic effect (of the C type according to [2]) brings a contradiction.

To solve this problem we assume that
i) there is any true formula among (23) to (25),
ii) condition (37) is fulfilled for all g(α) (according to Table 1 only the D4 model is
excluded),
iii) the Arrhenius equation in a form of (47) is true.

Putting all these together, if g(αm)=1, we obtain following forms:

from (23) Eq. (50)

from (24) k
q

T
m

m

= (52)

from (25) k
qR

E
m ≅

0005.
(53)

Further procedure involves
a) the determination of the km according to (46),
b) the analysis of the single-parameter correlation
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k vs q Tm m
p. / , where p=2, 1 or 0 (for p=1, slope=1)

c) the comparison of the determined values of activation energy with the actual ones,
assuming the averaged E value and the Kissinger law for the different heating rates q.

A priori, we can reject Eqs (50) or (51), because both introduce inconsistency.
The same applies to Eq. (53) which does not guarantee the agreement with activation
energy E.

In this context, Eq. (52) seems to be the most reliable and secure, because it does not
contain a term of activation energy, therefore, it seems to prove that Eq. (24) should be
used in dynamic conditions, despite the fact that it is Eq. (23) that is most used.

Summary II

A discussion of the precision of the Kissinger law and isokinetic effect, if applied to-
gether at the same time, results in a conclusion that these equations are connected
only by Eq. (24). It is true however only in proviso that we assume the modified ver-
sion of the Kissinger law.

If we modified the left side of Eq. (52) to a form of

Ae
q

T

–E / RT

m

m = (54)

we obtain:

ln ln –q

T
A

E

RTm m









 = (55)

We can observe that introducing simplified representation (45) to Eq. (41) once
more we obtain (55), which concludes our analysis of the strictly defined cycle.

Theoretical analysis enabled us to perform further investigations into the cor-
rectness of Eqs (50) to (53), which were presented elsewhere [53].

Conclusions

It is very strange that the first IUPAC publication from 1981 [54] does not mention
anything about the definitions of the terms used in chemical kinetics (as well as rec-
ommended symbols) of dynamic conditions. Our analysis shows that there are still
many controversies in this field, which concerns very substantial problems. Ba-
sically, ICTAC Conference [13–17] concentrates on the analysis of ‘a single kinetic
triplet’ [14]: E, A and f(α) in the different experimental conditions of decomposition,
basing mainly on the differentials according to Eq. (12). However, a number of the
specific problems concerning dynamic conditions have been omitted. We tried to dis-
cuss these issues in the current work. The dilemmas remaining are to be resolved by
the individual Reader on his own.
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The current work indicates that Eq. (24) is validated from the point of view of
the Kissinger law in its (55) version and isokinetic effect, despite a fact that its differ-
ential form (18) differs from the basic notation (17).

Thus, if we assume that Eq. (24) is validated we obtain a simple relation-
ship (52), which determines the rate constant of the decay reaction at the temperature
where the rate takes a maximal value, i.e., km=q/Tm.

The most important conclusions of the current work were shown in Table 4.

List of symbols

A pre-exponential factor/min–1

b the coefficient for converting activation energy E
C a constant that can take a value given by Eqs (32) to (34)
e= 2.718
E activation energy/J mol–1

E averaged value of activation energy/J mol–1

f(α) symbol of the mechanism of reaction/process
g(α) mass integral
∆G free enthalpy/J mol–1

h(α) a derivative of the f(α) function according to (29)
∆H enthalpy/J mol–1

k rate constant/min–1

k(T) rate constant depended on T/min–1

m a coefficient that can take a constant value of m=2, 1 or 0
n the reaction order
p exponent (p=2, 1 or 0)
R= 8.314 J mol–1 K–1

r2, ρ2 determination coefficient for the double and single parameter linear plot, respectively/%
q heating rate/K min–1

T absolute temperature/K
Tm temperature of the maximal rate reaction/process, from condition (26)/K
u dimensionless activation energy
α conversion degree, 0≤α≤1
δ a specific value of the h(α) function
ν stoichiometric coefficient
η thermodynamic yield, 0≤η≤1
τ time/min

Indexes

d decomposition
eq equilibrium
i initial state
m maximal reaction rate
min minimum

The kinetic function symbols that were in Tables 1 to 3 were given according
to [2, 49].
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Appendix 1

In Eq. (38) we substitute E/RT=x, dT= – E

R

x

x

d
2

to obtain g
A

q
J( )α =

where

J
E

R

e

x

e

x
x= +









∞

∫
–x –x

d
2

0

(A1)

This we can further present in a form of

J
E

R
J J= +( )1 2 (A2)

The J1 and J2 integrals cannot be given by the elementary integrals, but we can
obtain such a form for their sum to obtain

J
e

x
x

e

x

e

x
x1 2

= =
∞ ∞

∫ ∫
–x –x

x

–x

x

d d– – (A3)

J
e

x
x2=

∞

∫
–x

x

d (A4)

which after putting together gives

J J
e

x

RT

E
e1 2+ = =

∞

–
–x

x

–E / RT (A5)

The solutions of the J1 and J2 integrals appeared to be consistent with Tables
presented in [55] and previously works published by B��������	
 ��
 �
 ����

Appendix 2

The term of the averaged activation energy was defined in [9] and the current work.
If we do not take into account the Doyle’s coefficient of 1.0516, we should bear

in mind that
1) if we start from the temperature criterion

lnα vs. 1/T (A6)

the activation energy [35] values must be multiplied by the b coefficient that is given
in [9].
2) during the analysis of thermokinetic models in a version of

ln ( )g

T

α
m

vs. 1/T, m=2, 1 or 0 (A7)
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the activation energy values must be divided by the b coefficient.

For further example compare Table 1 [3].

Appendix 3

We start from Eq. (18) obtaining for condition (26)

d

d

d

d

d

d

d

d

2 2
m

m
2

–E / RT
m

m
2

m

m

mm

α α

α α
α

α

T T
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q
e f

E

RT

f

2
= =

= +( )
( )

T

E

RT
f

E

RTm m

m

m
2




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


 +




















=1 0– ( )α

(A8)

Substitution into (A8) for [df(αm)/dαm] Eq. (28) with condition (30), and for
(dαm/dTm) Eq. (18) we obtain:

A

q
e f

E

RT

E

RT

A

q
e

E

RT

–E / RT
m

m
2

m

–E / RT

m

m m( ) –α 1 1+







 +




















=

2

0– E

RTm
2

(A9)

After final putting in order we obtain Eq. (41).

* * *
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